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Because the three-dimensional large-scale vortex structures dominate the dispersion
of particles at intermediate Stokes numbers in shear layers, there is interest in
understanding the two-way thermal coupling effect in droplet–gas flows for practical
combustion applications. Using pseudo-spectral and Lagrangian approaches, three-
dimensional two-way thermally coupled droplet-laden mixing layers are studied with
hot air and cool water droplets. Higher air density is observed around the region of
the interface of the two streams and, thus, thermal contraction occurs in this region.
This thermal contraction results in an increase of the magnitude of the vorticity field,
a more unstable flow, a higher droplet concentration and a lower droplet dispersion
across the mixing layer.

1. Introduction
The dispersion of particles under the effect of large-scale turbulence in shear layers

has been of interest for the past twenty years. The large-scale organized spanwise
vortex structures in two-dimensional mixing layers have been identified and studied
both numerically and experimentally (Ho & Huerre 1984). Extensive numerical and
experimental studies have also been carried out to examine particle dispersion by
the two-dimensional organized vortex structures. It has been found that these vortex
structures have a dominant effect on the dispersion of particles over a range of Stokes
numbers (Eaton & Fessler 1994; Crowe, Chung & Troutt 1988; Chung & Troutt
1988; Crowe, Troutt & Chung 1996).

Although the two-dimensional large vortex structures are very stable, they are
still subject to three-dimensional instabilities. The three-dimensionality of the plane
mixing layer has been observed and studied not only in experiments (Miksad 1972;
Breidenthal 1978; Browand & Troutt 1980; Wygnanski et al. 1979; Lasheras, Cho &
Maxworthy 1986; Lasheras & Choi 1988; Huang & Ho 1990), but also in numerical
simulations. The counter-rotating ‘rib’ vortices, which exist in the region between
the rollers (the braid region) and extend from the bottom of one roller to the
top of the next, were found in most numerical simulations. The wavelength of the
three-dimensional instability was found to be about two-thirds of the wavelength
of the two-dimensional instability (Pierrehumbert & Widnall 1982). The small-scale
three-dimensional instabilities were shown to exist in free shear flows at moderately
low Reynolds numbers, and are responsible for the initial development of the
three-dimensionality. It was also found that the pairing of the two-dimensional
large-scale vortex structures has a suppressing effect on the growth rate of the
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three-dimensional structures. Once the three-dimensional modes reach a finite ampli-
tude, they manifest themselves mainly as counter-rotating, streamwise vortices that are
located on the braids between the spanwise-coherent two-dimensional pairing modes,
and the stabilizing effect of the two-dimensional structures is reduced (Metcalfe et al.
1987; Moser & Rogers 1993).

Then a question arises: How do the three-dimensional large-scale structures affect
the dispersion of particles? Marcu & Meiburg (1996) investigated the features of par-
ticle dispersion in a three-dimensional temporal mixing layer without vortex pairing.
The presence of the streamwise vortices results in additional dynamic effects that
modify the dispersion patterns of particles. Intense three-dimensional vortex stretch-
ing and folding produces ‘mushroom’-shaped particle dispersion patterns. Tong &
Wang (1997) also studied a three-dimensional particle-laden mixing layer. They used
the pseudo-spectral method with a Fourier vorticity-based scheme to simulate the
flow field and used both trajectory and continuum approaches to simulate the dis-
persion of particles with a Stokes number of unity. Ling et al. (1998) employed
an initial three-dimensional random perturbation to simulate a three-dimensional
temporal particle-laden mixing layer using the pseudo-spectral method and the La-
grangian approach. The counter-rotating rib structure developed naturally from the
initial random perturbation and the strength of the streamwise vorticity is about
one-tenth of that of the spanwise vorticity. Particles with Stokes number of the order
of unity were still found to have the largest concentration on the circumference of
the two-dimensional large-scale structures. The presence of the streamwise large-scale
structures causes the variation of the particle concentrations along the spanwise and
the transverse directions. The extent of variation also increases with the develop-
ment of the three-dimensionality, which results in the mushroom-shaped particle
distribution.

The dispersion of particles in turbulence is important in industrial applications such
as combustion, pollution control and materials processing. One of the applications
of the non-uniform concentration of particles is in the combustion of particulate
fuels or injected liquid fuel. The overall stoichiometry may be very lean but quite
fuel-rich environments can occur in the high strain region due to the demixing effect.
Higher combustion efficiency and lower pollution generation can be achieved by
controlling the preferential concentration. The above simulations are based on one-
way coupling, i.e. only the flow affects the dispersion of particles. However, moderate
mass loadings of particles can alter the fluid flow and for any non-isothermal flow
(such as any combustion process), the evaporating droplets represent mass sources
and thermal sinks in the flow. For turbulence modulation in particle-laden flows,
Gore & Crowe (1991) reviewed the available experimental data and proposed that
the ratio of particle diameter to the length scale of the most energetic eddy is a
good indicator. Squires & Eaton (1990) and Boivin, Simonin & Squires (1998) studied
forced homogeneous isotropic stationary particle-laden turbulence and Elghobashi &
Truesdell (1993) investigated a decaying isotropic particle-laden turbulent flow with
particles. They have found that particles increase the turbulent kinetic energy at high
wavenumbers and decrease it at low wavenumbers. An experimental effort has also
been made to investigate the kinetic energy transfer in a two-phase turbulent shear
flow and an inhomogeneous transfer of kinetic energy between the phases was also
found (Kiger & Lasheras 1995).

Saffman (1962), Tatsumi, Gotoh & Ayukawa (1964), Michael (1965), Yang et
al. (1990), and Tong & Wang (1998a) studied the linear stability of the two-way
momentum-coupled particle-laden mixing layer using the Orr–Sommerfeld equation.



DNS of a thermally coupled droplet-laden mixing layer 47

It was found that the addition of particles with small Stokes number destabilizes
the flow while the addition of particles with moderate and large Stokes numbers
stabilizes the flow. Particles with Stokes number of order of unity have the most
stabilizing effect on the linear stability of the flow. Concerning the effect of the
presence of the particles on the large-scale vortex structures of the mixing layer, Tang
et al. (1989) reported the results of a numerical study on the effect of momentum
coupling on a two-dimensional temporal mixing layer. They used the discrete vortex
method and the viscous flow effects were neglected based on the assumption of high
Reynolds number. It was found that the effect of momentum coupling is to delay
the vortex development process without noticeably affecting the mechanisms for the
vortex growth. Continuing their linear stability analysis, Tong & Wang (1998b) also
studied the momentum coupling effect on a two-dimensional temporal mixing layer.
They also found that the particle-laden mixing layer has the same rollup and pairing
processes as the single-phase mixing layer. However the time scales and length scales
were found to be larger and segregation of the vortex structures can result due to
the forcing from the momentum coupling terms for particles at intermediate Stokes
number.

Effort has also been devoted to numerical simulations of two-way-coupled droplet-
laden turbulent flows. Berlemont, Grancher & Gouesbet proposed mass, momentum
and heat source terms due to the phase change of droplets for the (k–ε) model
and simulated methyl alcohol droplets in a heated turbulent round jet. Using a di-
rect numerical simulation technique, Mashayek (1998a) investigated two-way mass,
momentum and energy coupling effects on droplet-laden low-Mach-number homoge-
neous shear flows. It was found that while the presence of non-evaporating droplets
decreases the turbulent kinetic energy of the flow, droplet evaporation increases both
the turbulent kinetic energy and the mean internal energy of the flow by mass transfer.
He also studied the dispersion of evaporating droplets in a forced low-Mach-number
isotropic turbulent flow (Mashayek 1998b). Xu et al. (1998) used the discrete vortex
method to study a two-dimensional droplet-laden wake flow with mass and thermal
energy coupling. They found that increasing mass or thermal coupling reduces the
dispersion of droplets and a large value of either of the two coupling parameters
results in a breakdown of the coherent vortex structures. However, there are no
published results on two-way thermal energy coupling effects on a three-dimensional
droplet-laden mixing layer.

The objective of present study is to investigate the two-way thermal energy coupling
effect on both the large-scale vortex structures of a three-dimensional temporal mixing
layer and the dispersion of droplets. Section 2 provides the governing equations for the
simulations and describes the numerical methods for the simulations. The simulation
results are discussed in § 3 and a summary of this study is presented in § 4. The
Appendix contains the detailed derivation of the approximated thermal equation for
the continuous phase.

2. Numerical modelling
2.1. Governing equations

The simulations of the two-way thermal energy coupling effect are performed for cool
water droplets in hot air such that the droplets are treated as thermal sinks in the
flow. The following assumptions are made to simplify the problem:

(i) The volume fraction of the droplets is very small (< 10−3) and the mass



48 W. Ling, J. N. Chung and C. T. Crowe

loading is low (< 0.1) such that the continuous phase is treated as ideal gas with the
properties of air.

(ii) The Mach number is low. Under this assumption, the kinetic energy associated
with the mass transfer and the work rate associated with the drag force are neglected
because both are scaled by the Eckert number, which is proportional to the square
of the Mach number (Crowe, Sommerfeld & Tsuji 1997).

(iii) The conductive heat transfer through the mixture is neglected due to the
large Péclet number, which is of the same order as the Reynolds number for a dilute
gas–droplet mixture.

(iv) All droplets are spheres with identical initial diameter D0 and density ρd and
they are approximated as heat sinks in the air flow.

(v) The material density of the droplets is much larger than that of the air.
(vi) Droplet–droplet interactions are neglected based on the dilute two-phase flow

assumption.
(vii) Gravity is neglected for both phases.
(viii) Initially, the droplets are in dynamic equilibrium with the mean flow and at

the wet-bulb temperature, Twb.
The accuracy of point-source assumption was examined in detail in the paper by

Eaton & Rouson (1998). They compared the results of using this assumption with
those of fully modelled particles. They concluded that as long as the diameter of the
particles is small compared to the grid scale of the computational cell, the point-
source assumption is reasonably valid. In one of their test cases where they found
the point-source assumption to be acceptable, 64 000 particles with diameters of 70
microns and 11% mass loading were simulated in a 32 × 65 × 32 grid system. The
diameter to grid spacing ratio is approximately 0.25. In present simulations, 262 144
particles with only 6% mass loading were put in a 128 × 129 × 128 grid system.
The diameter to grid spacing ratio is around 0.12 which is smaller than that in the
acceptable case of Eaton & Rouson (1998). Therefore, the point-source assumption
in the present study is reasonable.

Based on the above assumptions, the non-dimensional state equation of an ideal
gas, and conservation equations of mass, momentum and thermal energy for the
continuous phases can be simplified to following equations:

P ′0 = ρ′cT
′
c, (2.1)

∂ρ′c
∂t′

+
∂(ρ′cU ′i )
∂x′i

= 0, (2.2)

∂(ρ′cU ′i )
∂t′

= −∂P
′

∂x′i
+

1

Re

∂2U ′i
∂x′j∂x′j

− ∂(ρ′cU ′iU ′j)
∂x′j

, (2.3)

∂T ′c
∂t′

=
1

ρ′c
(−(γ − 1)P ′0

∂U ′i
∂x′i

+ γS ′h)−U ′i ∂T
′
c

∂x′i
, (2.4)

where superscript prime denotes a non-dimensional term, subscript c denotes the
properties of the continuous phase, γ = Cp/Cv , Re is the Reynolds number of the
flow based on the velocity scale, length scale, and the kinematic viscosity of the fluid,
and S ′h is the thermal energy coupling term.

The equations are non-dimensionalized by initial air density ρ0, initial air tempera-
ture T0, the velocity scale U0, which is the velocity difference between the two parallel
streams of the mixing layer, and the length scale L0, which is equal to λx/2π. Here, λx
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is the most unstable streamwise wavelength and is determined by the initial vorticity
thickness which depends on the initial mean velocity profile.

Due to the low Mach number assumption, the ambient pressure P0, which is only
a function of time (see discussion in the Appendix), is included in the equation of
state relating gas density to temperature. The mass and momentum coupling effects
are neglected due to the low initial mass loading. However, the energy transfer which
is associated with latent heat can become important. The simiplication process for
the thermal energy equation is shown in the Appendix.

The non-dimensional thermal energy coupling term S ′h in equation (2.4) is defined
as

S ′h =

N∑
k

S ′hk =

N∑
k

ρ̃′dNu
3StP r

(T ′wb − T ′d), (2.5)

where N is the total number of droplets in the control volume, ρ̃′d is the local bulk
density of the kth droplet, and T ′d the air temperature at the position of the kth
droplet.
St, the Stokes number of a droplet, is defined as

St =
ρdD

2/(18µ)

L0/U0

, (2.6)

where µ is the viscosity of the continuous phase and D is the diameter of the droplet.
Nu, the Nusselt number, is related to the relative Reynolds number and Prandtl

number by

Nu = 2 + 0.6Re0.5
r P r

0.33, (2.7)

where Pr = µCp/Kc with Kc the thermal conduction coefficient. Rer is the droplet
relative Reynolds number, which is based on the diameter of the droplet, the speed
difference between the droplet and the local flow, and the kinematic viscosity of the
continuous phase. In the present study, Rer is less than 3 for all cases.

To simplify the problem, all droplets are assumed to be initially at the wet-bulb
temperature, so the temperature of the droplets is constant. The reason for the
simplification is as follows. From the analysis of Crowe et al. (1997), the droplet
thermal response time (the time scale associated with the droplet heating-up stage)
is of the same order of magnitude as the droplet momentum response time for a
gas flow. So, at a Stokes number of order of unity, the non-dimensional thermal
response time of the droplets is also of the order of unity. From the previous one-way
coupling study (Ling et al. 1998), the three-dimensional large-scale vortex structures
are only fully developed around non-dimensional times of 30, which is much larger
than the droplet thermal response time. Therefore, the evaporation stage is much
more important than the heating-up stage.

Using equations (2.1) and (2.2), one can rewrite the thermal energy equation as

dP ′0
dt′

= −γP ′0 ∂U
′
i

∂x′i
+ γS ′h. (2.8)

Integrating equation (2.8) and using the periodic and free-slip boundary conditions,
one obtains the equation for P ′0:

dP ′0
dt′

=
1

V

∫∫∫
γS ′hdv, (2.9)

where V is the volume of the domain.
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The non-dimensional motion equation for a droplet is

dV ′

dt′
=

f

St
(U ′ − V ′), (2.10)

where V ′ is the velocity of a droplet, U ′ is the velocity of fluid at the position of the
droplet and f is a modification factor for the non-Stokes effect (Ling et al. 1998).

Due to the evaporation, the size of the droplet changes with time according to the
non-dimensional equation

(D′(n+1))2 = (D′(n))2 − λ∆t′, (2.11)

where λ, the non-dimensional droplet evaporation parameter, is calculated at each
time step for every droplet using the following approximation:

λ ≈ 4Nu

PrReρ′d

T0Cp

hL
(T ′d − T ′wb), (2.12)

where ρ′d is the non-dimensionalized droplet density, Cp is the specific heat and hL is
the latent heat.

2.2. Numerical procedure

The numerical procedure consists of the following three steps. The first step is to
compute the thermodynamic field of the continuous phase. The temperature field and
the pressure P ′0 are first advanced in time using the second-order Adam–Bashforth
scheme according to equations (2.4) and (2.9). The density field is then obtained by
using the following non-dimensional equation:

ρ′c =
P ′0
T ′c
. (2.13)

The second step is to compute the dynamics of the continuous phase. First, the
second-order Adam–Bashforth scheme is used to advance the product of the density
and velocity of the continuous phase to an intermediate time step without the effect
of the pressure gradient:

(ρ′cU
′
i )

(n+1/2) = (ρ′cU
′
i )

(n) + ∆t′( 3
2
Bi

(n) − 1
2
Bi

(n−1)), (2.14)

where

Bi =
1

Re

∂2U ′i
∂x′j∂x′j

− ∂(ρ′cU ′iU ′j)
∂x′j

. (2.15)

Then, (ρ′iU ′i )(n+1/2) is corrected by considering the pressure effect:

(ρ′cU ′i )(n+1) − (ρ′cU ′i )(n+1/2)

∆t′
= −∂P

′(n+1)

∂x′i
. (2.16)

Taking the divergence of (2.16) and using the continuity equation, one obtains the
Poisson equation for the pressure:

∂2P ′(n+1)

∂x′i∂x′i
=

1

∆t′

(
∂ρ′c

(n+1)

∂t′
+
∂(ρ′cU ′i )(n+1/2)

∂x′i

)
, (2.17)

where the term ∂ρ′c
(n+1)

/∂t′ is approximated by (ρ′c
(n+1) − ρ′c(n))/∆t′.

Finally, the third step is to compute the dispersed phase and the thermal energy
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Case T0 (K) Twb (K) T ′wb Stmass

TE600 384.5 306.2 0.796 600
TE800 360.2 301.2 0.836 800
TE1000 345.0 297.5 0.862 1000

Table 1. Two-way thermal coupling cases.

coupling terms introduced by the evaporation. The velocity and position of a droplet
can be obtained by integrating equation (2.10):

V ′(n+1)
= U ′ + (V ′(n) −U ′) exp

(
−f∆t′

St

)
, (2.18)

X ′(n+1)
p = X ′(n)p +U ′∆t′ + (V ′(n) −U ′)St

f

(
1− exp

(
−f∆t′

St

))
, (2.19)

where the fluid velocity U ′ and f are taken as constants during the integration over
a very small time step size.

Because one only has the velocity of the flow field at every grid point, the third
Lagrange interpolating polynomial is used to obtain the flow velocities at the positions
of the droplets. Other methods for evaluating the flow velocity are discussed by
Balachandar & Maxey (1989).

Using the pseudo-spectral method, the non-dimensionalized air density ρ′c, air
velocities U ′i , air pressure P ′, and temperature T ′c are represented by finite Fourier
series and all the spatial derivatives are solved in spectral space.

The initialization of the flow velocity field consists of two parts. One is the mean
velocity field and the other is the perturbations to the mean. The initial mean ve-
locity field is given as the hyperbolic tangent function of the transverse direction
only. The initial perturbations also consist of two parts. The first part is the initial
two-dimensional perturbation, which is imposed on the two-dimensional fundamental
and subharmonic unstable wavenumbers, derived from the linear Orr–Sommerfeld
equations (Michalke 1964). The second part is the initial three-dimensional pertur-
bation which is a specific energy spectrum with random fluctuating components. For
the details of the initialization, see Ling et al. (1998).

3. Simulation results
For the present study, the Reynolds number is 500, the initial Stokes number of

droplets is 4, the density ratio of the water to the air is 1000 and the air is at an initial
pressure of 1 bar with Pr = 0.68. Table 1 shows the other parameters for the three
two-way thermal coupling cases. Stmass, the non-dimensional droplet mass response
time, is defined as

Stmass =
(D′0)2

λ0

(3.1)

where λ0 is the initial value of λ and D′0 is the initial diameter of the droplet.
A higher Stmass means a higher T ′wb, thus lower thermal coupling effects. The size

of the computational box is 4π× 4π× 4π with 128× 129× 128 grids. 128× 8× 128
droplets are uniformly seeded in the region |Y | < π/4 initially and they are initially
in dynamic equilibrium with the mean flow. The initial mass loading for all the three
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Figure 1. Contours of the spanwise vorticity at Z = 0 and T = 24.

cases is about 0.06. A base case is also simulated to be compared with all the three
two-way thermal coupling cases. For the base case, there is no heat transfer between
the two phases and the initial dynamic field for both phases is the same as mentioned
above.

The simulation results for the dynamics of the vorticity, the thermodynamic field
and the properties of the droplets are discussed in the following three subsections. All
the properties or variables are in their dimensionless form. The superscript primes for
all terms are droped for simplification. T is used to represent non-dimensional time.

3.1. Vorticity dynamics

The vorticity dynamics, especially the development of the Kelvin–Helmholtz rollups,
the vortex pairing, and the counter-rotating rib structures are studied in this section.

By taking curl of equation (2.3), one obtains the vector form of the vorticity
equation:

Dω

Dt
+ ω∇ ·U =

1

ρ2
c

(∇ρc × ∇P ) +
1

Re
∇×

(∇2U

ρc

)
(3.2)

where ω is the vorticity vector of the flow. The heat sinks caused by the evaporation
of the droplets can result in not only a change of the air density field, which then
results in a change of the vorticity field, but also in the baroclinical torque, the first
term on right-hand side of the vorticity equation, due to the misalignment of density
gradient and pressure gradient.

The contours of the spanwise vorticity at Z = 0 (figure 1) and the streamwise
vorticity at X = −Lx/2 (figure 2) and X = 0 (figure 3) for case TE1000 are compared
with those for the base case at T = 24. The large-scale vortex structures, such as the
vortex pairing and the counter-rotating ribs, are almost the same as for the base case.
However, the cooler droplets near Y = 0 provide a heat sink for the surrounding
air. The cooling of the air causes an increase in the local air density and thus a
contracting effect which is called ‘thermal contraction’. The contraction of the flow
then results in a higher magnitude of the vorticity because of the conservation of
the angular momentum of the fluid. On the other hand, it was shown by McMurtry,
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Figure 2. Contours of the streamwise vorticity at X = −Lx/2 and T = 24.
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Figure 3. Contours of the streamwise vorticity at X = 0 and T = 24.

Riley & Metcalfe (1989) that the vorticity magnitude is reduced due to the expansion
of the flow in a mixing layer with heat release from chemical reaction.

The development of the total magnitude of the baroclinical torques in the spanwise
and streamwise directions are shown in figure 4 for cases TE1000 and TE800. It is
shown that the magnitude of the baroclinical torque in the spanwise direction is one
order of magnitude larger than that in the streamwise direction and the torque in the
spanwise direction reaches a local maximun value around the vortex pairing time.
Figure 5 shows the contours of baroclinical torque in the spanwise direction in the
Z = 0 plane and in the streamwise direction in the X = 0 plane. It is shown that
the baroclinical torque is distributed on the circumference of the large-scale vortex
structures and is of small scale. The distribution of the baroclinical torque seems
to be determined by the distribution of droplets, which determines the local density
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Figure 5. Contours of the baroclinical torque at T = 24.

gradient. The small-scale baroclinical torque can result in less-smooth contours of the
vorticity field when compared with the base case.

The increase in the magnitude of the vorticity can also be shown in the development
of the total magnitudes of the spanwise vorticity |ωz|T and the streamwise vorticity
|ωx|T . Here, |ωz|T and |ωx|T are defined as

|ωz|T =
∑
x

∑
y

∑
z

ω2
z (x, y, z), (3.3)

|ωx|T =
∑
x

∑
y

∑
z

ω2
x(x, y, z), (3.4)

where ωz is the spanwise vorticity and ωx is the streamwise vorticity.
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Figure 6. Development of the total magnitude of (a) spanwise vorticity and (b) streamwise
vorticity, normalized by their initial values.
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Figure 7. Development of (a) maximum and (b) minimum value of ωx normalized
by its initial value.

The development of |ωz|T and |ωx|T normalized by their initial values is shown in
figures 6(a) and 6(b) for the three two-way coupling cases as well as the base case. It
is observed that a case with a higher thermal energy coupling effect has higher values
of |ωz|T and |ωx|T .

While the normalized value of |ωz|T decreases as time increases for the base case,
it initially increases with time for the other three cases. The reasons are as follows:
For the base case, the spanwise vorticity initially concentrates in the narrow region
around Y = 0. As the flow develops, the spanwise vorticity starts to be redistributed
to a broader region. This results in a lower value of |ωz|T because the circulation
is conserved. However, for the cases with evaporation of droplets, because initially
droplets are uniformly seeded in the very narrow region around Y = 0, the effect
of the thermal contraction, at its highest degree, causes the spanwise vorticity to
concentrate in a narrower region and thus results in an increase of |ωz|T . As the
flow develops, the droplets are thrown out by the large-scale vortex structures. So the
vorticity is able to be redistributed to regions of higher |Y |. Therefore, after T ' 7,
which is approximately the rollup time, the normalized value of |ωz|T for all the three
cases behaves similarly to the base case.
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The increase in the magnitude of the vorticity can also been seen in figures 7 and
8, which display the development of the maximum and minimum values of ωz and
ωx normalized by their respective initial values. Because the minimum values of ωz
and ωx for all cases are negative, the normalized values represent the magnitude
of the minimum values. It is again observed that the case with a larger thermal
coupling effect results in a higher magnitude of the vorticity due to more thermal
contraction.

It has been argued that the strength of the Kelvin–Helmholtz rollups and the
vortex pairing are associated respectively with E(1,0), the energy in the streamwise
fundamental wavenumber, and E(0.5,0), the energy in the streamwise subharmonic
wavenumber (Ling et al. 1998; Tong & Wang 1998b). Here, E(1,0) and E(0.5,0) are
defined as

E(1,0) =
∑
ky

Cu
∣∣
kx=1, kz=0

, (3.5)

E(0.5,0) =
∑
ky

Cu
∣∣
kx=0.5, kz=0

. (3.6)

The development of the energy in these two specific Fourier modes is shown in
figures 9(a) and 9(b). It is observed that at the first peak of the energy at the
fundamental mode, a case with higher thermal coupling effects has higher values due
to more thermal contraction. At later times, the development of the energy in the
fundamental mode for the two-way coupling cases shows a small delay, compared
with the base case. The development of the energy in the subharmonic mode for the
two-way coupling cases also shows a slight delay and a case with higher thermal
coupling effects has a higher peak value of this energy. Again, this indicates that a
case with higher thermal coupling effects has increased strength of the vortex rollups
and pairing.

While a non-uniform distortion of the energy spectrum due to the two-way mo-
mentum coupling effect is observed for particle-laden turbulent flows (Elghobashi &
Truesdell 1993; Squires & Eaton 1990; Boivin et al. 1998), a uniform increase in
the energy spectrum is observed in the present simulations with two-way thermal
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coupling. The energy spectrum is defined as

E(k) =


∑

k−1<K6k

Cu when k 6= 0

Cu
∣∣
kx=0, ky=0, kz=0 when k = 0,

(3.7)

where k = 0, 1, 2, . . . and K =
√
k2
x + k2

y + k2
z .

The energy spectra for all the cases at T = 25 are displayed in figure 10. It is
shown that the case with higher thermal coupling effects contains more according to
the energy spectrum. The energy increase is caused by the thermal contraction on
both the large and small scales and it indicates a more unstable flow. This can also
be shown in the development of the momentum thickness δm, which is defined as

δm =

∫ ∞
−∞

(0.25− Ū1(y)2)dy, (3.8)
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where

Ū1(y) =

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2
ρcU1(x, y, z)dxdz∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2
ρcdxdz

. (3.9)

As shown in figure 11, the development of the momentum thickness reaches a local
maximum value around T = 23 for all the cases, which corresponds to the completion
of the vortex pairing. A case with larger thermal coupling effects has a larger value
of momentum thickness, which indicates a higher growth rate the mixing layer.

As the heat is transferred from the hot air to the cool droplets to supply the
energy needed for the droplet evaporation, lower air temperature, higher air density,
or thermal contraction results. To sustain the angular momentum of the flow field,
the strength of the vorticity field is increased due to the thermal contraction. As a
result, the flow field becomes more unstable.

3.2. Thermodynamic field

The thermodynamic properties of the flow field, such as the thermodynamic pressure,
air temperature, and air density, are studied in this section. All the properties are
presented in their non-dimensional forms.

Figure 12 shows the evolution of the thermodynamic pressure for the cases with
two-way thermal coupling effects. Because the simulations are performed for a closed
domain and the low Mach number assumption is used, the thermodynamic pressure
is a function of time only. According to equation (2.9), the rate of change of the
thermodynamic pressure should be negative since the thermal coupling term is always
negative. The decrease of the thermodynamic pressure is shown in figure 12 and the
case with higher thermal coupling effect is found to have an augmented decrease rate.
Over the duration of the simulation, the thermodynamic pressure has been reduced
by around 10%.
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The effect of thermal coupling on the spatially averaged air temperature is shown
in figure 13. In general, the average air temperatures all decrease monotonically with
time. It is clear that the rate of decrease is proportional to the level of thermal
coupling. In other words, the higher the thermal coupling effect the lower the air
temperature at any given instance. For every case, however, the rate of decrease of the
average air temperature is slightly lower than that of the thermodynamic pressure.
Note that for each case, the trends of evolution for the air temperature and for the
thermodynamic pressure are very similar. Both have the highest rate of decrease at
T = 0 and the lowest around T = 7 which corresponds to the rollup time. Since the
rate of decrease is closely related to the thermal coupling effect, the lowest thermal
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coupling effects occur around the rollup time. At T = 0, the droplets are distributed
uniformly in the flow field and the temperature difference between the two phases
is the largest, which gives rise to the highest thermal coupling effects. As the flow
develops further, the droplets become concentrated in certain local areas owing to the
Kelvin–Helmholtz rollups. This preferential dispersion of the droplets results in the
lowest thermal coupling effects. The ensuing vortex pairing stretches the concentration
area of the droplets which causes the thermal coupling effects to increase. However,
the thermal coupling effect is generally lower during the pairing process than that
at T = 0 because the temperature difference between the two phases is smaller and
some residual areas of concentrated droplets remain in the flow field. It will be shown
later that the droplets concentrate most during the rollup and produce the weakest
thermal coupling effects compared to other periods.

The air temperature field across the mixing layer is also studied. Figure 14 shows
the profile of T̄c(y) at different times for the three two-way coupling cases. Here, T̄c(y)
is defined as

T̄c(y) =

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2
Tc(x, y, z)dxdz

LxLz
. (3.10)

At T = 5, because the droplets are still concentrated in the narrow region around
Y = 0, the lowest value of T̄c(y) occurs at Y = 0. When T = 10, the Kevin–Helmholtz
rollups have developed and the droplets start to be thrown out by the large-scale
vortex structures. So two local minimum values of T̄c(y) occur near Y = 0. During
the development of the vortex pairing (around T = 20), even more droplets have been
thrown out and some droplets start to concentrate around Y = 0 in the mid-braid
plane (X = ±Lx/2) (Ling et al. 1998). Therefore, at T = 20, a local minimum value
of T̄c(y) again occurs and the profile of T̄c(y) is broadened out. Finally, when T = 30,
which is after the vortex pairing has taken place, the profile of T̄c(y) is broadened
even more. A case with higher thermal coupling effects always has a lower value of
T̄c(y) and the value of T̄c(y) for all the three cases is less than unity for all time.

According to equation (2.1), the profile of ρ̄c(y) should be similar to that of T̄c(y)
except that all the minimum or local minimum values should be maximum or local
maximum values because P0 is only a function of time. Here, ρ̄c(y) is defined as

ρ̄c(y) =

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2
ρc(x, y, z)dxdz

LxLz
. (3.11)

The profiles of ρ̄c(y) are shown in figure 15. The case with higher thermal coupling
effects maintains higher values of ρ̄c(y). While the value of T̄c(y) is always less
than unity, the value of ρ̄c(y) can be greater than unity around Y = 0. The higher
value of ρ̄c(y) represents increased thermal contraction because of the higher droplet
concentration. The thermal contraction around Y = 0 results in the increase in the
magnitude of the vorticity and the largest effect at the earliest time causes the initial
increase in |ωz|T shown in figure 6(a).

The details of the air temperature field can be compared with the distribution of
the droplets. As an example, figure 16 shows the distribution of the droplets and
the contours of the air temperature for case TE1000 on the Z = 0, X = −Lx/2,
and X = 0 planes at T = 23, which is about the pairing time. For the distribution
of the droplets, the plane actually represents a thin slice with a thickness of one
computational cell centred at that position.
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Figure 14. Profile of T̄c(y) at (a) T = 5, (b) T = 10, (c) T = 15, (d) T = 20, (e) T = 25,
(f) T = 30.

It is observed that the droplets still concentrate on the circumference of the large-
scale vortex structures, and the counter-rotating rib structures cause the variation of
the distribution of the droplets along the spanwise direction. On the X = −Lx/2 plane,
the positions of lower air temperatures and positions of higher droplet concentration
agree very well due to the low dispersion scale of both the fluid and droplets in this
plane. However, on the Z = 0 plane, because the dispersion of both the fluid elements
and droplets is orders of magnitude larger than those on the X = −Lx/2 plane, the
location of the lower air temperatures depends on the history of the droplets and flow
field. Therefore, they do not agree well with those of higher droplet concentrations.
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3.3. Droplets

While some qualitative results for the droplet dispersion are shown in figure 16, some
quantitative results are addressed in this section.

Using the Lagrangian approach, the motion and evaporation of each droplet are
computed. While the initial diameters of all the droplets are the same, the size of
each droplet should be different at later time because it depends on the droplet path.
As an example, figure 17 shows the size distribution of droplets for case TE800 at
T = 26.

Because Stmass, the dimensionless mass response time of a droplet, is of order 103
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Figure 16. (a) Droplet distribution and (b) contours of air temperature for case TE1000 at T = 23.

for every case, which is orders of magnitude larger than the dimensionless time of the
simulation, the change in droplet size is small. For example,the change in the average
droplet Stokes number is less than 3%.

The change in the overall droplet concentration can be verified by studying the
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Figure 17. Droplet size distribution of case TE800 at T = 26.

development of Nrms, which is defined as

Nrms =

√√√√√√
Nc∑
i=1

Ni
2

Nc

, (3.12)

where Nc is total number of computational cells and Ni is the number of droplets in
the ith cell. As shown in figure 18, the overall concentration of the droplets increases
very fast initially and reaches a maximum value at time about 7. Then it starts to
decrease due to the stretching effect of the vortex pairing and remains nearly constant
for the time period from 10 to 20. Finally, it starts to increase again at a much lower
rate than it does initially due to the folding effect after the vortex pairing. It is also
seen that the overall concentration is higher for a case with higher thermal coupling
because of the increased thermal contraction.

The dispersion scales of the droplets can be quantitatively studied by evaluating the
dispersion function in the Y -direction for the droplets initially seeded on the Y = 0
plane and in Z-direction for the droplets initially seeded on the Z = 0 plane. These
two dispersion functions are defined as

Dy(t) =

√√√√ 1

Nd

Np∑
i=1

(Yi(t)− Ym(t))2, (3.13)

Dz(t) =

√√√√ 1

Nd

Np∑
i=1

(Zi(t)− Zm(t))2, (3.14)

where Nd is the total number of droplets, Ym(t) is the mean value of droplet displace-
ment in the transverse direction at time t, and Zm(t) is the mean value of droplets
displacement in the spanwise direction at time t.
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Figure 19(a) shows the dispersion function in the Y-direction and figure 19(b) shows
the dispersion function in the Z-direction for all the three two-way thermal coupling
cases with comparison to the base case. For the dispersion in the Y-direction, the
case with higher thermal coupling has lower values because of the increased thermal
contraction. For the dispersion in the Z-direction, the curves show a pivot point when
time is about 18. The case with higher thermal coupling has lower values before
this time and higher values after this time. This phenomenon is probably due to the
combined effects of the thermal contraction, the droplet dispersion in both the Y-
and Z-directions, and the increased magnitude of the vorticity.

4. Conclusions
Using the pseudo-spectral method and Lagrangian approach, three-dimensional

two-way thermally coupled mixing layers with cool water droplets in hot air were
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simulated. The flow was at low Mach number and the mass and momentum coupling
effects were neglected because of low initial mass loading (< 0.1). The droplets were
assumed to be at the wet-bulb temperature for all the time and represented as heat
sinks in the flow. Initially, all droplets were at the Stokes number of 4 and distributed
uniformly in a narrow region around the interface of the two streams. The initial
Stokes number associated with the mass response time for the droplets is on the order
of 103.

The following effects of the two-way thermal coupling were observed from the
simulations.

(i) Evaporating droplets represent heat sinks in the flow, and the heat sinks result
in a thermal contraction, a higher magnitude of the vorticity field, a higher overall
droplet concentration and less droplet dispersion in the transverse direction.

(ii) At fixed initial conditions, the overall coupling effect at any time is directly
related to the overall droplet concentration at that time. The highest droplet concen-
tration corresponds to the lowest coupling effect.

(iii) The locations of lower air temperatures may not correspond to those of higher
droplet concentrations because the dispersion history of both phases can play an
important role.

Appendix. Approximation of the thermal energy equation for the air
Under the assumptions of void fraction near unity and no gravity, the thermal

energy equation for the continuous phase can be approximated by

∂(ρcic)

∂t
+
∂(ρcUiic)

∂xi
= −P ∂Ui

∂xi
+ τij

∂Ui

∂xj
+ Smhs + Sh. (A 1)

Under the low Mach number assumption, the speed of sound is infinite and any
disturbances in the thermodynamic pressure are felt instantaneously throughout the
fluid. So, the thermodynamic pressure can only be a function of time in a closed
domain. The dynamic pressure associated with the fluid motion, under order of
magnitude analysis, does not participate directly in the thermal process (McMurtry
et al. 1986). Therefore, the thermal energy equation (A 1) can be approximated by

∂(ρcic)

∂t
+
∂(ρcUiic)

∂xi
= −P0

∂Ui

∂xi
+ τij

∂Ui

∂xj
+ Smhs + Sh. (A 2)

Using ic = CvTc and assuming Cv is constant due to the low mass loading, the
thermal energy equation can be written as

CvTc
Dρc
Dt

+ Cvρc
DTc
Dt

+ CvρcTc
∂Ui

∂xi
= −P0

∂Ui

∂xi
+ τij

∂Ui

∂xj
+ Smhs + Sh. (A 3)

Neglecting mass loading effects, the mass continuity equation for the continuous
phase is

∂ρc

∂t
+
∂(ρcUi)

∂xi
= 0. (A 4)

From the above equation, one has

∂Ui

∂xi
= − 1

ρc

Dρc
Dt

. (A 5)

Substituting equation (A 5) into the left-hand side of the thermal energy equation
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(A 3), one obtains

ρcCv
DTc
Dt

= −P0

∂Ui

∂xi
+ τij

∂Ui

∂xj
+ Smhs + Sh. (A 6)

Again, under order of magnitude analysis, τij∂Ui/∂xj is scaled by the ratio of the
Eckert number to the Reynolds number and Smhs is scaled by the reciprocal of τm.
Therefore, both terms can be neglected for low Mach number and large τm. The final
form of the thermal energy equation is

ρcCv
DTc
Dt

= −P0

∂Ui

∂xi
+ Sh. (A 7)
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